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Constrained Solution of a
System of Matrix Equations

Abstract

This report presents a technique for constrained solution of a system of matrix
equations which arises in the problem of pole placement with static dissipative output
feedback. Previously developed necessary conditions for the existence of a solution are
shown to be sufficient as well. A minimax approach is presented to determine a feasible
coefficient vector that satisfies these conditions. A procedure to construct the desired
solution matrix, based on minimax programming techniques, is detailed. Numerical

examples are presented to illustrate the application of this approach.



Constrained Solution of a
System of Matrix Equations

Introduction

A technique for constrained solutions of the system of matrix equations

GWip = Vip

GWap = Vop W
where W;, Vi, 2 = 1,2, are given m x n data matrices, G is an m x m unknown
matrix, and p is an arbitrary unknown n x 1 coefficient vector, is described in this
report. The solution matrix, G, is constrained such that its symmetric part, that is,
sym{G} £ 3(G + GT), is positive semidefinite. A further constraint on the solution is
also considered, wherein the solution matrix G is symmetric and positive semidefinite.
Such systems of matrix equations arise in the eigensystem assignment problem with
dissipativity constraints!?. The eigenpair assignment problem is reduced to a system of
equations in Eq. (1), where G is the unknown feedback gain matrix that must satisfy the
dissipativity constraints and p is an arbitrary coefficient vector. Specifically, Eq. (14)
of Ref. 2 corresponds to Eq. (1) above, which is investigated in this report. Necessary

conditions on the arbitrary coefficient vector, p, for the existence of a solution matrix,
(G, are available in Ref. 2.

This report shows that the necessary conditions on the arbitrary coefficient vector, p,
for the existence of a solution matrix? are sufficient as well. This development reduces
the problem of constrained solution of the system of matrices to determining a feasible
coefficient vector. A minimax approach to determine a coefficient vector satisfying these
conditions is presented. The technique to obtain a matrix, G, that satisfies the system of
equations in Eq. (1) along with the constraints of positive semidefiniteness is detailed.

A numerical example has been presented to illustrate this technique.



Solution Technique

First, a proposition presents necessary and sufficient conditions on the arbitrary

coefficient vector, p, for the existence of a constrained solution to the system of matrices

in Eq. (1).

Propesition. A matrix G whose symmetric part is positive semidefinite satisfies Eq. (1)
if and only if there exists a vector p which satisfies
pTVIWip >0
pT Vi Wap 2 0 )
Tior . 1 A
(" VT Wip) (pTVTWap) — 5 (T W Wap + 7V Wip) > 0
Furthermore, a symmetric and positive semidefinite matrix G solves Eq. (1) if

and only if there exists a vector p which satisfies the inequalities in Eq. (2) and

pTVIWap = pT VIW)p.

Proof: The necessity of the conditions in Eq. (2) for existence of a solution has been
proved in Ref. 2. The following presents another approach to this proof. Denote
y1 = Wip. yo=Vop. ;= Wip and 29 = W,p. Then, the conditions in Eq. (2) become
y?rl > 0. y{xz > 0 and (y;‘rzl)(ygrg) - i—(yirrg +y,_?x1)2 > 0. Eq. (1) can be

written as Glr; 2] = [y1 2], and premultiplying this by [z1 z2 ]T leads to

[z 7Gx, 2] =[n z2) w1 9o
~ [z{yl x{yz} 3)
Ty 2ty

Adding Eq. (3) and its transpose yields
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Now if sym(G) > 0, then Eq. (4) implies that
[ y{:vl O.5(y?xg + ygrl)] -
0 2

(5)
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Since determinants of the principal minors of a positive semidefinite matrix must be
nonnegative, the conditions in Eq. (2) follow. Thus, if there exists a matrix G, which
satisfies Eq. (1), and its symmetric part is positive semidefinite, then the vector p must
satisfy conditions in Eq. (2).

For sufficiency, it has to be shown that if a vector p satisfies the conditions in Eq.
(2), then there exists a matrix G, whose symmetric part is positive semidefinite, which
satisfies Eq. (1). A constructive proof of this statement follows. Denote X = [z; z]
and Y = [y; y2]. Then, Eq. (1) may be rewritten as GX =Y. Let Q) be an orthogonal
matrix, such that

~

Y

QTY = (6)

where Y, isa nonsingular 2 x 2 matrix. The matrix () can be obtained by QR factorization?
of Y. Define )~(1, )~(;> as follows
X,
_ | =QTXx )
X2
where X 1 1s a 2 x 2 matrix, and .’?2 is a (m — 2) x 2 matrix. Note that -’?1 is nonsingular
if z; and z; are linearly independent (otherwise, Eq. (1) is solved trivially). Defining

Gn = Yle‘l, it can be seen that

611 0 5(;1 )71
~ | = 8
0 0]|X; 0
Therefore, it follows that the matrix G defined as
Gn 0] .
G=@Q Q )
0 0
satisfies GX =Y.
Next, it is shown that sym(G) > 0. From Eq. (5) it follows that conditions in Eq. (2)
imply sym(YTX) > 0. Next, since Y7 X = (QTY)T(QTX) =¥YTX), sym(YTX) >
0 leads to sym(?lTXl) > 0. Noting that sym(?lT)?]) = )?IT [sym(én)])’f] >0,



svm (é n) > 0 follows from the nonsingularity of )~(1. Finally, by construction,
sym(G) > 0 if sym(én) > 0.

Furthermore, if G is symmetric, that is, G = sym(G), then y1 To = I] TGTz, =
.’IZ?_TGT:Cl = y:.T z1, so that the additional condition in the proposition is satisfied. On the
other hand, the additional constraint ensures that Y7 X = ?IT)? 1 is symmetric. Since

= 511)?1, }~,'1T_§('—1 = )~{1T}~"1, and )?1 is nonsingluar, it follows that 511 is symmetric.
Finally, again by construction, G is symmetric when G is symmetric. n

The next step in solution of Eq. (1) is to determine a coefficient vector, p, that satisfies
conditions of the proposition, Eq. (2). A number of approaches have been attempted for
this problem?. A very efficient and reliable numerical approach to determining a feasible
coefficient vector, based on minimax optimization, is presented below.

The conditions of Eq. (2) may be used directly for a minimax optimization. However,
note that while the first two conditions form a quadratic in the coefficient vector, p, the
last condition is much more complicated, potentially leading to numerical inefficiencies
in the optimization algorithms. Sufficient conditions on the coefficient vector p, in terms

of four quadratic inequalities, are as follows:

:pT{ TW] + Vl W’)+V0T"V1)}p 2 0
:pT{VITWI-— Vi Ww+\/TW1)}p >0

(10)
:pT{VQTwﬁ LITwo+vTW1)} >0
fap)=p {V W:»—;(LTW +V; W)} >0

4

The conditions together imply that the coefficient vector, p satisfies

PP Vi Wip - >0

( TV Wap + pT VT Wlp)

(11)
pT VI Wap — IQ< TyTw, p+pTV,TWlp)‘ >0

It can be readily verified that if the coefficient vector p satisfies the conditions in Eq.

(11), then the inequalities of Eq. (2) are also satisfied.
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Since the four expressions on the left hand side of the inequalities in Eq. (10)
are quadratic in the coefficient vector, p, a feasible coefficient vector can be reliably
determined using numerical programming techniques. The approach is to maximize the
minimum of the four quadratic functions, fi(p), : = 1, ...,4, with respect to p, until all of
them are positive. This problem becomes a standard minimax problem by reversing the
sign of the quadratic functions, that is, minimizing the maximum of — f;(p), : = 1,...,4
with respect to p. By introducing a scalar variable, A, the minimax problem is transformed

to a constrained minimization problem, as follows:

mi/\n A such that fi(p)+ A2 >0,:=1,...,4 (12)
P,

Standard nonlinear programming techniques may be used for this constrained
minimization®. Analytic gradients of the quadratic functions, fi(p), i = 1,...,4,
are readily available, since the gradient of any quadratic function is given as
% (p'Qp) = (@ + QT)p. The optimization in Eq. (12) is very well-behaved because
the functons, f;(p), ¢ = 1,...,4, are quadratic in p, and analytic gradients are linear in
p. A nonpositive value of A in Eq. (12) provides a feasible coefficient vector, p, that
satisfies the conditions in Eq. (2). The convergence of the nonlinear optimization in

Eq. (12) is not an issue, since the search can be terminated once a desirable (negative)

target value of A has been attained.

Furthermore, if a symmetric and positive semidefinite solution of Eq. (1) is desired,

it follows from the Proposition that an additional equality constraint,
9(p) = T (VW2 = VW1 )p =0 (13)

must be satisfied apart from the conditions in Eq. (2). It is noted that this equality
constraint again involves a quadratic in p, so that its analytic gradient is linear and
readily available. Therefore, to obtain a feasible coefficient vector, p, for a symmetric
and positive semidefinite solution matrix, G, the equality constraint in Eq. (13) must be
included with the optimization of Eq. (12). Again, a feasible vector p is obtained as

soon as the scalar parameter, ), attains a nonpositive value.
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Experience in application of the minimax approach presented above has shown
that this technique is very effective in obtaining a feasible coefficient vector, p, which
satisfies the conditions in Eq. (2).

Once a feasible coefficient vector, p, satisfying the conditions of the Proposition has

been obtained, a constrained solution of Eq. (1) may be constructed as follows:

1. Fomm the m x 2 matrices, Y = [Vip Vap], and X = [Wip Wop]
2. Perform a QR decomposition of ¥ to obtain }71 as in Eq. (6), and obtain 5{'1 from

Eq. (7).
3. Using Gy; = Y, X}, form the solution matrix G as in Eq. (9).

From the proof of the Proposition, it follows that starting with a feasible coefficient
vector, the matrix, G, constructed from the steps above is a desired solution of the

system of matrix equations in Eq. (1).
Numerical Example

A numerical example is presented in this section to demonstrate the solution technique
presented in this report. The data matrices (W), Wa, Vi, Vs2) used in this example have
been obtained from the numerical example in Ref. 2 for damping enhancement of a
model of a flexible space structure at NASA Langley. For this example, m = 4 and
n = 8. The 1 x 8 data matrices W7, W5, V1, V5 are given below.

[ 0.002 —0.202 0.326 —0.468 -0.063 0.001 -0.002 0.0051
0.000 0.721 —0.406 —0.156 0.005 0.028 0.042 0.015

Wi =
—0.002 —0.338 0.279 —0.063 0.035 0.035 0.051 0.023
| 0.001 —0.205 —0.167 0.809 —0.031 0.026 0.044 0.010
[0.063 —0.001 0.002 —0.005 0.002 —0.202 0.326 —0.468]
v —0.005 —0.028 -0.042 -0.013 0.000 0.721 —-0.406 —0.156
N =

-0.055 —0.035 -0.051 —0.023 -0.002 -0.338 0.279 -0.063
| 0.031  —0.026 —0.044 —0.010 0.001 —0.205 -0.167  0.809




[ 0.267 0.092 0.137 0.041 -—0.790 0.175 0.259 0.095]
0.000 0.073 0.116 0.028 -0.131 0.256 0.370 0.143
—0.238 0.051 0.091 0.016 0.465 0.299 0.454 0.186
| 0.137 0.068 0.105 0.038 —0.446 0.156 0.250 0.170 |
[ 0.790 —0.175 -0.259 -0.095 0.267 0.092 0.137 0.041]
0.131 -0.256 -0.370 -0.143 0.000 0.073 0.116 0.028
—-0.465 -0.299 -0.454 -0.186 -—0.238 0.051 0.091 0.016

| 0.446 —0.156 -0.250 -0.170 0.137 0.068 0.105 0.038 |
The problem is to determine a 4 x4 matrix G whose symmetric part is positive semidefinite

and solves Eq. (1) for some 8 x 1 coefficient vector p.

The first step is to determine a feasible coefficient vector, p, which satisfies the
conditions of the Proposition. This is done by solving the nonlinear optimization problem
in Eq. (12). Note that upper and lower bounds have to be imposed on the elements of
the coefficient vector p for solution of this optimization problem. The upper bounds were
set to 1.0, and the lower bounds were set to —1.0 for the current solution. Optimization

software of Refs. 5 and 6 is used to determine a feasible value of p as
p=1{1.000 1.000 1.000 1.000 —0.966 1.000 —0.404 0.948 ]T

Using this feasible value of the coefficient vector, p, the first step is to form the

matrices Y and X, which are

[-0.275 —0.721] [ 1.462  0.078
0.180 0.647 0.587 —0.585
y - X =
-0.140 -0.674 —-0.239 -—-1.146
| 0.485  0.579 | | 0.995  —0.202 |

For the second step, a QR decomposition® of Y results in
[—-0.456  0.308 —0.237 0.801

0299 -0473 0.630 0.538
—0.233 0.631 0.722 -0.162
| 0.805 0.532 —0.159 0.207




and V) =

- 0.602 1.146
. Using Eq. (7), it follows that X =
0.000 —0.645 0.551 -0.530

» [0.366 ——0.106}

7.019 —-3.565

Finally, G = hWX[" = [ 2.624 1.741

], and from Eq. (9), a constrained
solution of Eq. (1) is

[ 2.404 —2.220 2.298 —2.078]
-2.104 1.890 -—1.969 1.683

2.095 —1.895 1.983 -—1.623
|—2.539 2191 -2.218 2.392

Eigenvalues of the symmetric part of G are {8.447, 0.3133, 0.000, 0.000}, which shows
that it is positive semidefinite. It can be readily checked that this matrix satisfies Eq. (1).

Similarly, for a symmetric and positive semidefinite solution, the additional equality
constraint of Eq. (13) is included in the optimization problem, to obtain a feasible

coefficient vector as
p=[0.074 —-0.176 —0.244 —0.085 0.071 -0.081 -—0.136 —O.OGS]T

Following the steps above, a symmetric and positive semidefinite solution of the system
of equations is obtained as

[0.352 0312 —0.245 0.165 |
1] 0312 0947 0467  0.092
10 | —0.245 0.467 0.867 —0.169
| 0.165 0.092 —0.169 0.082 |

Eigenvalues of this matrix are {0.138, 0.087, 0.000, 0.000}, which shows that this matrix
is symmetric and positive definite. Again, it can be readily verified that this matrix does
satisfy Eq. (1).

This solution technique has been used for various other data sets corresponding to
different problems of damping enhancement of flexible space structures. It has been

found to be very efficient and reliable on all problems attempted thus far.
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Summary

This report has presented an approach to the constrained solution of a system of
matrix equations which arises frequently in pole placement with output feedback under
dissipativity constraints. It has been shown that previously available necessary conditions
for the existence of constrained solutions are sufficient as well. A minimax approach
to determine a feasible coefficient vector satisfying the conditions for existence of a
solution was presented, and the steps to construct a constrained solution to the system of
matrix equations have been described. This approach has been successfully applied to
the design of static dissipative controllers for eigensystem assignment in several flexible

structure applications, and has proven to be very reliable and efficient.
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